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Abstract. We briefly review the molecular mode-coupling theory which takes into account both
the translational and the orientational degrees of freedom. Depending on the symmetry of the
physical system, several scenarios of ideal glass transition from ergodic to nonergodic behaviour
may occur. The validity of the scaling laws for the α- and β-relaxation, originally derived from
mode-coupling theory for simple liquids, will be discussed. These predictions will be compared
with results from molecular dynamics simulations. We will demonstrate which of the predictions
are consistent with these numerical results and which are not. Particular attention will be given to
the rotational diffusion tensor.

1. Introduction

Despite considerable efforts during recent years the structural glass transition is still not
completely understood. Several theoretical approaches exist which describe some aspects
of that transition more or less satisfactorily.

There is the mode-coupling theory (MCT) which has contributed most to this subject.
In its original, idealized version it provides a closed set of nonlinear integro-differential
equations for the dynamical structure factor S(q, t) of a simple liquid in equilibrium [1].
MCT is a microscopic theory in the sense that its solution is completely determined by the
knowledge of the static structure factor S(q) which, in principle, can be calculated from the
microscopic interactions by means of statistical mechanics. The main result of (idealized)
MCT is a dynamical transition at a critical temperature Tc (or critical density nc) from an
ergodic to a nonergodic phase, i.e. from a liquid to an ideal glass. In the vicinity (above and
below) of Tc, MCT makes several interesting predictions where the existence of a so-called
β-relaxation timescale (not to be confused with the Johari–Goldstein β-peak) tσ is probably
the most important one. There are several papers which review MCT and its predictions
(see e.g. [2–5]). The test of the predictions has been a great challenge for computational
and experimental physicists. Clear indications of the existence of Tc have been provided
for several glass-forming systems, although the transition is not sharp. Many numerical and
experimental results are consistent with various MCT predictions. Such tests of MCT were
reviewed, e.g. in references [3, 6, 7]. The absence of a sharp transition is consistent with the
extended MCT [8, 9] which also takes into account the coupling to current density. In physical
terms this coupling introduces hopping processes which restore ergodicity, at least on a very
long timescale.

Quite a different approach has recently been suggested which is called the replica theory
(RT) for structural glasses (see e.g. [10–14] and the contribution by Mezard and Parisi in
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this Special Issue [30]). This approach is based on the observation that the time-dependent
configuration remains in the vicinity of a reference configuration in the case of a glassy phase
but not for a liquid. RT predicts a static glass transition at a temperature Tf at which the
configurational entropy per particle vanishes. Accordingly Tf , which is below Tc, can be
identified with the Kauzmann temperature. Since RT starts from a microscopic Hamiltonian
it can be considered as a microscopic theory, as well. First numerical investigations give some
evidence for the existence of Tf [11, 13, 14].

For mean-field-type spin-glass models with p-spin interactions (p � 3) for which MCT
becomes exact (see e.g. reference [15]), both the dynamical and the static transition are sharp.
In recent years it has been speculated that structural glasses have much in common with such
spin-glass models. However, it remains to be shown that this is really true for structural
glass formers with short-range interactions and without quenched disorder. As regards Tc for
(idealized) MCT, we already know that in general no sharp transition occurs at Tc. Whether
in such systems a sharp static transition exists at Tf has not been proven. In addition,
compared to the tests of MCT, there are only few numerical tests and no experimental one
of RT.

Although it is not our purpose to give a complete overview of all existing theoretical
approaches to the structural glass transition, we would like to mention the facilitated kinetic
Ising model and its variants which are designed to model the important phenomenon of
cooperativity in a supercooled liquid (see e.g. the contribution by Jäckle et al in this Special
Issue [31]), the use of an energy landscape description (see Angelani et al, Biroli et al, Dasgupta
et al and Ritort in this Special Issue [32]) and instantaneous normal-mode analysis (see Cavagna
et al in this Special Issue [33]).

Our contribution will focus on the extension of MCT for simple liquids to molecular
systems. This is important because (i) most glass formers are of molecular origin and (ii) it
will offer the possibility of investigating the freezing of the orientational degrees of freedom
and the role of their coupling to the translational ones. After giving a concise review of
molecular mode-coupling theory (MMCT), we will elucidate in a first part similarities of and
differences between the general predictions of MCT and MMCT. This will address the question
of several glass transition scenarios for the freezing of translational and orientational modes
and the validity of both scaling laws for α- and β-relaxation. In a second part we will review
the first numerical tests of MMCT for a supercooled liquid of diatomic molecules. Most
attention will be devoted to the rotational diffusion tensor which MMCT predicts to become
zero at the ideal glass transition temperature Tc. On the other hand, simple physical arguments
will be presented showing that this cannot happen. Although an orientational cage prevents
the relaxation to equilibrium of the molecular orientations it does not imply vanishing of the
rotational diffusion constant.

2. Molecular mode-coupling theory

2.1. Molecular mode-coupling equations

In this subsection we briefly review the extension of MCT to molecular liquids. This has been
done for a linear molecule in a simple liquid [16], for a molecular liquid of linear molecules [17]
and for general molecules [18, 19] by use of a molecular representation, i.e. decomposing the
degrees of freedom for a rigid molecule into translational and orientational ones. Recently, a
site–site representation has also been used [20]. For more details on molecular mode-coupling
theory (MMCT) the reader may consult references [16–19].
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The starting point of MMCT are the microscopic, tensorial density modes:

ρκ(�q, t) = i�(2� + 1)c1/2
N∑
j=1

ei�q·�xj (t)D�∗
mn(�j (t)) (1)

where �xj (t) and �j(t) = (ψj (t), θj (t), χj (t)) are the centre-of-mass position and orientation
(specified by Euler’s angles), respectively, of the j th molecule at time t . D�

mn(�) are Wigner’s
rotation matrices. We also introduced the shorthand notation κ ≡ (�,m, n) where � runs over
all positive integers including zero, andm as well as n takes integer values between −� and �.
Then the molecular two-point correlation functions are given by

Sκκ ′(�q, t) = 1

N
〈ρ∗
κ (�q, t)ρκ ′(�q, 0)〉. (2)

For � = �′ = 0, 1 and 2 they are of great experimental importance since they make the main
contributions to the light scattering cross section (� = 0 and � = 2) and to the dielectric
spectra (� = 1). For neutron scattering all correlators Sκκ ′ contribute, but for |�q| not too large,
i.e. |�q| � qmax (the position of the main peak in the centre-of-mass correlator S000,000(�q, t)),
correlators with small � and �′ make the main contributions [21].

The Mori–Zwanzig projection formalism in conjunction with the mode-coupling approx-
imation provides a closed, coupled set of equations forSκκ ′(�q, t)which for its Laplace transform
(Sκκ ′(�q, z)) ≡S(�q, z) takes the following form:

S(�q, z) = − [
zS−1(�q) + S−1(�q)K(�q, z)S−1(�q)]−1

(3)

Kκκ ′(�q, z) =
∑

α,α′=R,T

3∑
µ,µ′=1

∑
κ ′′κ ′′′

q
αµ

κκ ′′(�q)qα′µ′!
κ ′κ ′′′ (�q)kαµ,α′µ′

κ ′′κ ′′′ (�q, z) (4)

k(�q, z) = − [
zJ−1(�q) + J−1(�q)M(�q, z)J−1(�q)]−1

(5)

where (
J(�q))αµ,α′µ′

κκ ′ ≡ J
αµ,α′µ′
κκ ′ (�q) = kT

Iαµ
δκκ ′δαα′δµµ′ (6)

is the static current-density-correlation matrix. qαµκκ ′(�q) equals qµδκκ ′ for α = T and is related
to the angular momentum operators Lµ for α = R.

Iαµ =
{
m α = T

Iµ α = R
(7)

is a unified notation for the molecular mass and its principal moments of inertia Iµ. The
second term in equation (5) is decomposed into a regular part mreg(�q, z) accounting for the
fast motion and a contribution m(�q, z) due to slow pairs of density modes. The underbar in k,
J and m stands for the additional superscripts (αµ, α′µ′). Making use of the mode-coupling
approximation one finds for the memory kernel m(�q, t) in the time regime

m
αµ,α′µ′
κκ ′ (�q, t) = 1

2N

(
ρ0

8π2

)2 ∑
�q1,�q2

∑
κ1,κ2;
κ ′

1,κ
′
2

vαµκκ1κ2
(�q, �q1, �q2)v

α′µ′∗

κ ′κ ′
1κ

′
2
(�q, �q1, �q2)

× Sκ1κ
′
1
(�q, t)Sκ2κ

′
2
(�q, t) (8)

where ρ0 = N/V is the number density and the explicit expression for the factors vαµ of the
vertex functions can be found in reference [19]. It is important to mention that these factors
depend on the static correlators Sκκ ′(�q), only.
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2.2. The glass transition scenario

Similarly to the case for simple liquids, the ideal dynamical glass transition is indicated by
nonvanishing nonergodicity parameters:

Fκκ ′(�q) = lim
t→∞ Sκκ

′(�q, t) = − lim
z→0

zSκκ ′(�q, z). (9)

For � and/or �′ �= 0 they describe the freezing of the orientational degrees of freedom. The
question which now arises is: Do translational and orientational modes freeze simultaneously
or not? The answer to this question depends on the particle’s symmetry.

For instance, for a system of dipolar hard spheres, which is controlled by the packing
fraction φ and the temperature T , there are two characteristic temperatures T1 and T2 < T1

such that only the modes with � and �′ even undergo a structural glass transition at a critical
line φ(B)c (T ), and not those with � and �′ odd, provided that T > T1. For T2 < T < T1

the same happens at φ(B)c (T ). But, on increasing φ further, there is a spin-glass-like transition
(continuous) at a critical lineφ(A)c (T ) > φ(B)c (T )where the modes with � and �′ odd freeze, too.
At T2 the critical line φ(A)c (T ) merges into φ(B)c (T ) such that all modes freeze simultaneously
for T � T2. For molecules without any symmetry there exists one temperature Tc (or density
nc) only, where all modes freeze simultaneously [19, 22].

Recently we have speculated that for, e.g., hard ellipsoids it might be possible that the
orientational degrees of freedom perform a glass transition into an orientational glass while the
centre-of-mass motion remains ergodic [23]. Such a phase would be a liquid glass, in analogy
to a liquid crystal. Increasing the packing fraction even more should finally result in a freezing
of the translational degrees of freedom. These examples demonstrate that the glass transition
scenario can be rather rich due to the presence of orientational degrees of freedom and their
coupling to the translational motion.

2.3. The two scaling laws

2.3.1. α-relaxation. The α-relaxation describes structural relaxation, which is not influenced
by inertia effects. Therefore, on the α-relaxation timescale τ(T ) one may neglect the first term
in equation (5). It is easy to prove that the resulting set of equations are invariant under a scale
transformation

z → z/λ λ real

or in the time regime under

t → λt.

Consequently, there exist α-master functions φ(α)κκ ′ (�q, x) such that

Sκκ ′(�q, t, T ) = φ
(α)
κκ ′ (�q, t/τ (T )). (10)

The reader should note that φ(α) depends on �q and on κ, κ ′. This result is a straightforward
generalization of that for simple liquids [2].

2.3.2. β-relaxation. For simple liquids it has been proven [2] that there exists a β-relaxation
timescale tσ (T ) on which the particle is captured in a cage, which leads to

S(q, t, T ) ≡ Fc(q) +H(q)G(t, T ). (11)

where Fc(q) is the critical nonergodicity parameter, H(q) the critical amplitude and G(t, T )
the so-called β-correlator which is related to the master function g±(x) by

G(t, T ) = cσ (T )g±(t/tσ (T )). (12)
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The upper and lower signs refer to T � Tc and T > Tc, respectively. The correlation scale
cσ (T ) is proportional to |T − Tc|1/2. The proof is based on the positivity of the vertices of the
memory kernel which holds for a simple one-component liquid, but not for molecular liquids.
This positivity guarantees that the glass transition is driven by only one mode which becomes
unstable at Tc. However, this condition is sufficient but not necessary. We are convinced that
this single-mode instability is the generic case. Therefore equation (11) can be generalized to

Sκκ ′(q, t, T ) ∼= Fc
κκ ′(�q) +Hκκ ′(�q)G(t, T ) (13)

whereG(t, T ) is given by equation (12). The Laplace transformg±(z) fulfils the same equation:

∓1 + λzLT[g±(t)2](z) + [zg±(z)]2 = 0 (14)

like for simple liquids [2]. The only influence of the orientational degrees of freedom is in λ
(see the comment below). In the vicinity of Tc it is (as for simple liquids)

tσ (T ) ∼ |T − Tc|−a/2 T ≶ Tc. (15)

The condition that the Sκκ ′ from (10) and (13) overlap for tσ � t � τ fixes τ(T ):

τ(T ) ∼ (T − Tc)
−γ T � Tc (16)

where γ = 1
2a + 1

2b and a and b follow from the exponent parameter λ:

(:(1 − a))2

:(1 − 2a)
= λ = (:(1 − b))2

:(1 − 2b)
. (17)

:(x) is the gamma function. λ is the most crucial parameter in the β-regime, and it is related
to the static structure factors at Tc. This relationship is not universal and it involves the
orientational correlations as well [24].

2.4. Diffusion constants

We restrict our consideration to the rotational diffusion tensor Dµµ′
R . The equations for DT ,

the translational diffusion constant, are similar. Let us first investigate the rotational diffusion
tensor D̃µµ′

R in the body fixed frame which is given by

D̃
µµ′
R =

∫ ∞

0
dt 〈ω̃µ(t)ω̃µ′

(0)〉 (18)

where ω̃µ(t) is the µth component of the angular velocity of a tagged particle in its body fixed
frame. Using the self-current density

j̃ (s)αµκ (�q, t) = i�(2� + 1)1/2ṽαµ(t)ei�q·�x(t)D�∗
mn(�(t)) (19)

where

ṽαµ(t) =
{
ẋµ(t) α = T

ω̃µ(t) α = R.
(20)

We introduce the corresponding self-part of the current-density correlator:

J̃
(s)αµ,α′µ′
κκ ′ (�q, t) =

〈
j̃ (s)αµ

∗
κ (�q, t)j̃ (s)α′µ′

κ ′ (�q, 0)
〉

(21)

It is easy to show that D̃µµ′
R is determined by the Laplace transform of its rotational part:

D̃
µµ′
R = (−i) lim

z→0
lim
�q→0

J̃
(s)Rµ,Rµ′
000,000 (�q, z). (22)
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Again using the projection formalism, but now projecting onto j̃ (s)αµκ (�q) and ρ(s)κ (�q), the
tensorial self-density, we get

J̃
(s)
(�q, z) ∼= −z

{
z21 + J̃

(s)
(�q) [Q(�q) + zm(s)(�q, z)]}−1

J̃
(s)
(�q) (23)

where we neglected the fast part of the memory kernel. Q(�q) is a bilinear form in qαµκκ ′(�q)which
appeared in equation (4). A mode-coupling approximation for m(s)(�q, t) can be obtained
by projecting the fluctuating force j̃ •(s)αµ

κ (�q) onto the bilinear product ρ(s)κ ′ (�q ′)ρκ ′′(�q ′′) and
subsequent factorization of the four-point correlator. For low enough temperatures the coupling
between ρ(s)κ ′ and ρκ ′′ should become so strong that the self-motion freezes. This freezing is
accompanied by a 1/z pole of m(s)(�q, t). Then it follows from (22) that for z → 0

J̃
(s)
(0, z) → zÃ(0) (24)

where the matrix Ã(0) does not depend on z. Substituting (23) into (21) results in

D̃
µµ′
R = 0 (25)

for all temperatures for which the self-motion has undergone an ideal glass transition. One
arrives at the same conclusion for the tensor Dµµ′

R in the laboratory fixed frame and also for
the translational diffusion constant DT . The latter follows from equation (21) by replacement
of R by T (i.e. one has to take the translation part of the self-current-density correlation) and
summation over µ.

3. Comparison with MD results

The predictions of the molecular mode-coupling theory were compared with results from a
MD simulation for a system of rigid linear molecules [25, 26] and for the SPC/E model for
water [19, 27]. Here we will just review the results for the linear molecules. Attention will be
particularly drawn to the rotational diffusion tensor.

In figure 1 we show the α-relaxation times τ�m,q of the correlators

Sm��′(q, t) ≡ S�m0,�′m0(q, t)

for � = �′ as a function of temperature. They can be fitted more or less well by the predicted
power law (see equation (15)). Although the deviations from a power law become large at the
lowest temperatures we can still locate the critical temperature Tc

∼= 0.475 (in Lennard-Jones
units) within a few per cent. The corresponding γ -values are not identical (as predicted by
MCT) but fluctuate by about ten per cent.

The test of the α-scaling law (cf. equation (10)) is presented by figure 2 for e.g. S0
11(2.8, t)

and S0
22(2.8, t). Whereas the � = �′ = 2 correlator is consistent with equation (10) (and the

same is true for the other correlators) it does not hold for the correlator with � = �′ = 1,
In the β-relaxation regime we have checked the validity of equation (13). The result is

shown in figure 3 for a few correlators. The thick solid line represents the β-correlatorG(t, T )
(cf. equation (13)). The times for the different correlators were scaled such that the inflection
points (see the dot in figure 3) coincided. Whereas the collective density correlator S0

00(q, t)

for q = qmax, the position of the main peak in the corresponding static correlator, follows
G(t, T ) over more than four decades in time, this interval has shrunk to about two decades
for S0

00(q, t) for q = qmin, the first minimum in the static structure factor. This demonstrates
that the temperature range over which equation (13) holds depends on the correlator, i.e. on q
and (�, �′,m). This is quite consistent with the results of reference [28] which calculates the
next-leading order to the asymptotic laws and demonstrates for a system of hard spheres that
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Figure 1. α-relaxation times τ�m,q versus T − Tc for m = 0 and: q = 2.8, � = 1 (filled squares);
q = 2.8, � = 2 (filled circles); q = 7.3, � = 1 (open squares); q = 7.3, � = 2 (open circles). The
bold lines represent power laws and the thin lines are a guide for the eye.

the regime where these laws hold depends on the correlator itself. Similarly to the case for
α-relaxation, the correlators with � = �′ = 1 are not consistent with equation (13).

In figure 4 we depict the temperature dependence of the translational (D) and rotational
diffusion constant (DR) obtained from, respectively, the mean square displacement and from

DR =
3∑

µ=1

D
µµ

R (26)

with Dµµ

R from equation (17), but ω̃µ replaced by ωµ, the angular velocity in the laboratory
fixed frame. D(T ) becomes rather small when approaching Tc and can be fitted by a power
law (T − Tc)

γ over about four decades in D. For the highest temperatures, DR exhibits the
same temperature dependence as D, but bifurcates from D at a temperature which is about
four times Tc, and then follows an Arrhenius law. This result is in disagreement with what we
concluded from the molecular mode-coupling equations.

We have also performed a more stringent test by using the static correlators from the
simulation as an input for the MMCT equations in order to calculate the critical nonergodicity
parametersFm,c

��′ (q). This was done by truncating the equation at �c0 = 2 [24]. The comparison
with the numerical result is shown in figure 5.

Keeping in mind that no fit parameter is used, the agreement is very good for F 0,c
00 (q),

but less satisfactory for F 0,c
22 (q). The discrepancy for � = �′ = 2 might be related to the

truncation at �c0 = 2. Work investigating this point is in progress. The reader should also
note that MMCT yields Tc

∼= 0.7521 [24] which is almost twice the value deduced from the
MD simulation. This means that MCT overestimates the ideal glass transition temperature.
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Figure 2. Sm��(q, t, T ) (normalized by the corresponding static correlator) versus rescaled time
t/τ (T ) for q = 2.8, m = 0 and the seven lowest temperatures of the simulation for (a) � = 1 and
(b) � = 2.

4. Conclusions

We have demonstrated that many of the features of the supercooled liquid of diatomic molecules
can be described well with the molecular mode-coupling equations. The consistency is not



Mode-coupling theory 6319

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

t

−60

−50

−40

−30

−20

−10

0

10

20

(S
llm
(q

,t)
−

f llc,
m
(q

))
 / 

h llm
(q

)
~

Figure 3. Time dependences of various correlators for T = 0.477 shifted by the corresponding
nonergodicity parameters and subsequently divided by the critical amplitude: the self-correlator
S
(s)0
00 (qmax, t) (thin solid line), the collective correlators S0

00(q, t) for q = qmax (long-dashed line)

and q = qmin (short-dashed line) and S(s)022 (q, t) (dashed–dotted line) and the β-correlator G(t)
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Figure 4. An arrhenius plot for the translational and rotational diffusion constant. D is multiplied
by 15 in order to make both curves collapse at high temperatures. The straight line indicates
Arrhenius behaviour, the dashed one represents a power law with a critical temperature T ′

c
∼= 0.38

and the dotted line is a guide for the eye.
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Figure 5. q-dependences of the critical nonergodicity parameters from MMCT (solid line) and
simulation (dashed line). (a) � = �′ = m = 0 and (b) � = �′ = 2, m = 0.

perfect but mostly within the statistical errors. Deviations like those in figure 5(b) are probably
due to truncating the equations at �c0 = 2. The main discrepancy occurs for the correlators



Mode-coupling theory 6321

with � = 1 and the rotational diffusion constant.
We have found that the correlators with � = 1 are strongly influenced by 180◦ jumps of the

molecular axis which are not taken into account by our MCT approach and which correspond to
the hopping processes. Another interesting possible explanation has recently been suggested.
There it has been shown that for a single dumb-bell molecule within an isotropic liquid in the
vicinity of a type-A transition the self-correlators with � even behave qualitatively differently
to those with � odd [29]. The failure for the rotational diffusion constant seems to be more
serious. Let us assume that a linear molecule with direction �u(t) is in an ‘orientational’ cage
which for simplicity we may choose as a cone along the z-axis and has an angle θ0. Then the
polar angle θ(t) of �u(t) is restricted to between 0 and θ0 whereas the azimuthal angle φ(t) of
�u(t) is unrestricted. It is this latter property which allows∣∣∣∣

∫ t

0
dt ′ �ω(t ′) · �ez

∣∣∣∣
2

∼ tDzz
R (27)

to increase linearly over time. At present it is not obvious how to reconcile this fact (which
should also be true for general molecules) with the molecular mode-coupling theory. The
orientational cage prevents the relaxation of the self-correlators S(s)�m0,�′m′0(q, t) for � and �′ not
equal to zero, but it does not lead to a vanishing rotational diffusion constant. This is quite
different to the case for the translational degrees of freedom where a perfect ‘translational’
cage makes D zero.
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